Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

‘Tuning’ the Variable Stiffness Head Gasket an Interactive Computational Approach

1987-10-01
871998
Problems of bore distortion, combustion blowby and gasket fatigue in lightweight engine blocks are ultimately related to the gasket sealing pressure distribution. For both conventional embossed steel gaskets and composite ones this distribution can be modified by suitable local changes in gasket stiffness. Current methods of gasket optimization concentrate on large scale iterative finite element analysis of the head/gasket/block system, with major computational costs. We present a more economical alternative in which condensed compliance matrices are obtained either from elementary NASTRAN runs or by experimental means. The algorithm enables the gasket engineer to ‘tune’ the gasket to the desired sealing pressure profile with acceptable stiffness variations.
Technical Paper

‘Wheel Slip-Based’ Evaluation of Road Friction Potential for Distributed Electric Vehicle

2016-04-05
2016-01-1667
As a typical parameter of the road-vehicle interface, the road friction potential acts an important factor that governs the vehicle motion states under certain maneuvering input, which makes the prior knowledge of maximum road friction capacity crucial to the vehicle stability control systems. Since the direct measure of the road friction potential is expensive for vehicle active safety system, the evaluation of this variable by cost effective method is becoming a hot issue all these years. A ‘wheel slip based’ maximum road friction coefficient estimation method based on a modified Dugoff tire model for distributed drive electric vehicles is proposed in this paper. It aims to evaluate the road friction potential with vehicle and wheel dynamics analyzing by using standard sensors equipped on production vehicle, and fully take the advantage of distributed EV that the wheel drive torque and rolling speed can be obtained accurately.
Technical Paper

“A Successful Electronic Ignition System thru Fundamental Problem Analysis”

1974-02-01
740154
For 1974, Ford Motor Company is providing, as standard equipment, a solid state ignition system on all 400 CID and 460 CID engines as well as on all California vehicles equipped with 200 through 351 CID engines. This paper explains the Ford solid state ignition system and the objectives and design philosophy that was used in the development of the system. Further, a review of the design and production validation test plans is discussed. With this background, specific examples of the effectiveness of complete problem analysis for fundamental cause and corrective action is presented in addition to control methods and evaluation of corrective action. This problem analysis system allowed this automotive electronic product to go into production with a high degree of confidence in meeting the reliability goals.
Technical Paper

“Aluminium Hot Forming: - Opportunities and Challenges in Automotive Light Weighting”

2023-05-25
2023-28-1304
In today’s Automotive world, there is NO need to advocate “Light weighting”. Government policies for carbon footprint reduction combined with high safety standards are driving OEMs to adopt advanced manufacturing technologies. Steel hot forming is selected as most preferred way to reduce weight as it is easy to adopt and commercially known. It had many advantages compare to conventional cold stamping of standard and high tensile steel. The process consists of heating blank to nearly 1000 °C and quenching it in tool to for martensitic structure. Higher strength up to 2000 MPa can be achieved by this process. There are many examples where part weight is reduced by 15 to 20 % by this method. But Steel hot forming has limitation as specific density of steel is still high. Thus, there is limitation to its weight reduction capability. For further reduction, OEMs have started exploring Aluminium hot forming.
Technical Paper

“Aviation Transportation Security”

2003-03-03
2003-01-1346
This essay presents a brief history of aviation security measures, including problems exploited by terror attacks such as those of September 11th. Recent policy modifications are also discussed. Finally, conclusions are drawn and rationally developed into a policy proposal for developing a more secure system of domestic aviation transportation.
Technical Paper

“Concept to Concrete” Development of a Truck Type Street Sweeper

1979-02-01
790879
A new truck type street sweeper has been developed which incorporates some of the sweeping advantages of a three wheeled sweeper (tricycle steer) and the transport advantages of a legal highway truck. It offers major productivity improvements through better operator environment and decrease of nonsweeping time in the operational cycle. It is possible for a small “short line” special purpose vehicle manufacturer to develop, test, and produce such a vehicle and meet Federal regulatory requirements with limited “In house” design and testing facilities. Here this was accomplished through judicious augmentation by outside specialized design and testing organizations.
Technical Paper

“Consumer Attitudes and Perceptions about Safety and Their Preferences and Willingness to Pay for Safety”

2010-10-19
2010-01-2336
The U.S. National Highway Transportation and Safety Agency's (NHTSA) early estimates of Motor Traffic Fatalities in 2009 in the United States [1] show continuing progress on improving traffic safety on the U.S. roadways. The number of total fatalities and the fatality rate per 100 Million Vehicle Miles (MVM), both show continuing declines. In the 10 year period from 1999 through 2009, the total fatalities have dropped from 41,611 to 33,963 and the fatality rate has dropped from 1.5 fatalities per 100MVM to 1.16 fatalities per 100MVM, a compound annual drop of 2.01% and 2.54% respectively. The large number of traffic fatalities, and the slowing down of the fatality rate decline, compared to the decade before, continues to remain a cause of concern for regulators.
Technical Paper

“Derivation of Conduction Heat Transfer in Thin Shell Toroids”

2000-07-10
2000-01-2487
This paper presents the derivation of the equations for circumferential, longitudinal and radial heat transfer conductance for a thin shell toroid or a segment of the toroid. A thin shell toroid is one in which the radius to thickness ratio is greater than 10. The equations for the surface area of a toroid or of a toroidal segment will also be derived along with the equation to determine the location of the centroid. The surface area is needed to determine the radial conductance in the toroid or toroidal segment and the centroid is needed to determine the heat transfer center of the toroid or toroidal segment for circumferential and longitudinal conductance. These equations can be used to obtain more accurate results for conductive heat transfer in toroid which is a curved spacecraft components. A comparison will be made (1) using the equations derived in this paper which takes into account the curvature of the toroid (true geometry) and (2) using flat plates to simulate the toroid.
Technical Paper

“EVO: New Metallic Substrate Development for Commercial Vehicle and Non-Road Applications”

2021-09-22
2021-26-0211
Affordable, efficient and durable catalytic converters for the Commercial Vehicle and Non-Road industry in all countries are required to reduce vehicle emissions under real world driving conditions and fulfill future legal requirements. Specially for India traffic conditions and payload to engine size conditions new cost-effective solutions are needed to participate in a cleaner and healthier environment. Metallic substrates with structured foils like the Transversal StructureTM (TS) or the Longitudinal StructureTM (LS) have been proved to be capable of improving conversion behavior, even with smaller catalyst size. Now Vitesco Technologies is developed a new Substrate for Heavy duty applications that specifically maintains the geometric surface area at a very high level and improves further the mass transport of the pollutants, which potentially leads together to very high pollutant conversion rates.
Technical Paper

“Ease of Driving” Road Classification for Night-time Driving Conditions

2016-04-05
2016-01-0119
This paper is an extension of our previous work on the CHASE (Classification by Holistic Analysis of Scene Environment) algorithm, that automatically classifies the driving complexity of a road scene image during day-time conditions and assigns it an ‘Ease of Driving’ (EoD) score. At night, apart from traffic variations and road type conditions, illumination changes are a major predominant factor that affect the road visibility and the driving easiness. In order to resolve the problem of analyzing the driving complexity of roads at night, a brightness detection module is incorporated in our end-to-end nighttime EoD system, which computes the ‘brightness factor’ (bright or dark) for that given night-time road scene. The brightness factor along with a multi-level machine learning classifier is then used to classify the EoD score for a night-time road scene. Our end-to-end ‘Night-time EoD system’ is a real-time onboard system implemented and tested on road scene data collected in Japan.
Technical Paper

“Electric Aircraft” Pioneer The Focke-Wulf Fw 190

1996-10-01
965631
The Focke-Wulf Fw 190 was one of the truly outstanding fighter aircraft of the Second World War. It distinguished itself over all fronts on which the Luftwaffe fought in conditions ranging from arctic wastes to the deserts of North Africa. The Fw 190 represented the epitome of conventional piston-engine fighter design on the threshold of the jet age. Conceived nearly sixty years ago, flying for the first time on the eve of the war in 1939 and acknowledged as “the best all-around fighter in the world” in the mid-war years, derivatives of the Fw 190 were still pushing the ultimate capability boundary for this class of aircraft at war's end in 1945 (reaching maximum level true airspeeds of 470 mph [about Mach 0.7] at altitudes of well over 40,000 feet). This paper assesses the design attributes and technology approaches, including innovative use of advanced electrical systems, that were used to make the Fw 190 one of the great all-around fighters in aviation history.
Technical Paper

“Flexible” Cargo Handling Systems for Standard-Body Airplanes

1986-09-01
861153
The manner in which the lower deck cargo compartments of standard-body airplanes are designed, equipped, and serviced has not changed appreciably over the past 50 years. A number of factors now at work within the air transportation industry are causing carriers and airplane manufacturers to explore alternative approaches to these tasks. This paper reviews these factors, presents a new approach to lower deck cargo handling systems design, and describes how this approach can be applied to standard-body airplanes.
Technical Paper

“Jet Air” Compressor Control System

1971-02-01
710203
This paper describes the interrelated controls for automatic start sequencing, fuel scheduling, customer air delivery, and supervisory and protective systems as applied to the Curtiss-Wright CW657E “Jet-Air” Compressor. Model CW657E is capable of delivering 15,000 SCFM air at 85 psig (at 30°F and sea level pressure) and may be used in a diversity of manufacturing, processing, and industrial applications. A description of the control system and its operation in relation to compressor requirements, while furnishing air to feed distribution lines to air assisted water atomizing nozzles for snow making is reviewed as an example. Other models can deliver up to 30,000 SCFM with modified control systems, including pressure controls.
Technical Paper

“LABORATORY OCTANE RATINGS WHAT DO THEY MEAN?”

1957-01-01
570099
The results of several anti-knock studies are discussed in this paper. Road anti-knock performance for 1000 fuel blends covering the years 1940 to 1957 have been investigated. The laboratory Research octane numbers of these fuels covered the range from 80 to 105. The fuels were evaluated in 46 cars representing a cross-section of the automotive products for these years. The objective of these investigations was to determine the practical application of the laboratory to road octane rating relationships, and the effect of vehicles, and operating conditions on these relationships. The results show that there is a valid correlation between laboratory and road octane ratings. The relative importance of Research and Motor octane ratings on road performance is influenced by make of car, engine speed, throttle position, and distributor advance characteristics. It also indicated that aromatics improve, whereas olefins reduce high speed Modified Borderline ratings.
Technical Paper

“Meta-modeling”, Optimization and Robust Engineering of Automotive Systems Using Design of Experiments

2001-03-05
2001-01-3848
This paper describes the application of statistical techniques known as Design of Experiments (D.O.E.) to efficiently use the results of numerical analysis data in order to improve the configuration of automotive systems. The general framework of these techniques is presented in a format aiming at the design engineer as their end user. Besides, a case study is presented with the purpose of illustrating their practical use. The first step of the case study is to build predictive models for the behaviour of the automotive system being developed by means of the Response Surface Method (RSM), using the proper D.O.E. options. Once these predictive models are available, automatic numerical optimization algorithms are used to improve the responses of interest for given operating conditions. Finally, the automotive systems are robust designed taking into account that the operating conditions vary randomly.
X